1. Introduction
  2. Computing B \mathbf{B} given A \mathbf{A}
    1. Example – A sin θ ϕ ^ / r 2 \mathbf{A}\sim \sin\theta \hat{\boldsymbol{\phi}}/{r^2}
    2. Problem – A ϕ ^ \mathbf{A}\sim \hat{\boldsymbol{\phi}}
    3. Problem – A y z ^ \mathbf{A}\sim |y|\mathbf{\hat{z}}
    4. Dipole Vector Potential
  3. Computing A \mathbf{A}
    1. Example – Infinitely Long and Straight Wire
    2. Problem – A \mathbf{A} due to a finite wire segment
    3. Example – Magnetic Dipole A \mathbf{A} Derivation
    4. Problem

For electrostatic fields, we found from Coulomb’s law that there is a scalar function such that E = V \mathbf{E}=-\boldsymbol{\nabla}V . For charge distributions that are finite in extent (e.g., not an infinite line or plane), we can compute E \mathbf{E} by first computing

V ( r ) = 1 4 π ϵ o ( ρ ( r ) ԉ d τ + σ ( r ) ԉ d A + λ ( r ) ԉ d l ) \displaystyle V(\mathbf{r})=\frac{1}{4\pi\epsilon_o}\left(\int \frac{\rho(\mathbf{r}')}{\char"0509}d\tau' + \int \frac{\sigma(\mathbf{r}')}{\char"0509}dA' + \int \frac{\lambda(\mathbf{r}')}{\char"0509}dl'\right)

and then use E = V \mathbf{E}=-\boldsymbol{\nabla}V . (In most problems, only one of the charge densities in the above equation was not zero; the equation above is the most general equation.) Given that the integrands are scalars, it is often easier to use this approach rather than computing E \mathbf{E} directly using Coulomb’s Law:

E ( r ) = 1 4 π ϵ o ( ԉ ^ 2 ԉ 2 ρ ( r ) d τ + ԉ ^ 2 ԉ 2 σ ( r ) d A + ԉ ^ 2 ԉ 2 λ ( r ) d l ) \displaystyle \mathbf{E}(\mathbf{r})=\frac{1}{4\pi\epsilon_o}\left(\int \frac{\hat{\textbf{\char"0509}}\phantom{^2}}{\char"0509^2}\rho(\mathbf{r}')d\tau' + \int \frac{\hat{\textbf{\char"0509}}\phantom{^2}}{\char"0509^2}\sigma(\mathbf{r}')dA' + \int \frac{\hat{\textbf{\char"0509}}\phantom{^2}}{\char"0509^2}\lambda(\mathbf{r}')dl'\right)

The reason that we can find V V for which E = V \mathbf{E}=-\boldsymbol{\nabla}V is electrostatic fields (field due to non–moving charges) have the property that × E = 0 \boldsymbol{\nabla}\times \mathbf{E}=0 .

We can always compute B \mathbf{B} using the Biot–Savart law:

B ( r ) = μ o 4 π ( d l × ԉ ^ 2 ԉ 2 J ( r ) d τ + d l × ԉ ^ 2 ԉ 2 K ( r ) d A + d l × ԉ ^ 2 ԉ 2 I ( r ) d l ) \displaystyle \mathbf{B}(\mathbf{r})=\frac{\mu_o}{4\pi}\left(\int d\mathbf{l}'\times\frac{\hat{\textbf{\char"0509}}\phantom{^2}}{\char"0509^2}J(\mathbf{r}')d\tau' + \int d\mathbf{l}'\times\frac{\hat{\textbf{\char"0509}}\phantom{^2}}{\char"0509^2}K(\mathbf{r}')dA' + \int d\mathbf{l}'\times\frac{\hat{\textbf{\char"0509}}\phantom{^2}}{\char"0509^2}I(\mathbf{r}')dl'\right)

(I’ve written the integrands in a slightly different way so that it looks more like the integrands for E \mathbf{E} .)

From the Biot–Savart law, it can be shown that × B = μ o J \boldsymbol{\nabla}\times \mathbf{B}=\mu_o\mathbf{J} . Because × B 0 \boldsymbol{\nabla}\times \mathbf{B}\ne 0 , we cannot in general find a scalar function V m V_m such that B = V m \mathbf{B}=-\nabla V_m . ( V m V_m has some use; it can be used for solving boundary value problems in current–free regions and also when fitting measurements from current–free regions.)

However, we can find a vector function A \mathbf{A} for which B = × A \mathbf{B}=\boldsymbol{\nabla}\times \mathbf{A} . This vector is called the “vector potential,” and it applies to magnetic fields only.

A natural question is why we introduce this vector potential (see also 15-4 in the Feynman Lectures on Physics). One of the reasons that V V is useful is that it is a scalar, and so instead of discussing the vector function E \mathbf{E} , we can discuss the scalar function V V . Also, V V has a physical interpretation and use – for example, it can be used to find the work required to assemble a charge distribution. Neither of these is true for the vector potential A \mathbf{A} . There are, however, several uses for A \mathbf{A} . One is that the equations for finding it look similar to that for V V :

A ( r ) = μ o 4 π ( J ( r ) ԉ d τ + K ( r ) ԉ d a + I ( r ) ԉ d l ) . \displaystyle \mathbf{A}(\mathbf{r})=\frac{\mu_o}{4\pi}\left(\int \frac{\mathbf{J}(\mathbf{r}')}{\char"0509}d\tau' + \int \frac{\mathbf{K}(\mathbf{r}')}{\char"0509}da' + \int \frac{\mathbf{I}(\mathbf{r}')}{\char"0509}dl'\right).

As a result, some of the techniques used in computing V V can be used in computing A \mathbf{A} . In addition, some of the integrals found for V V can be re–used when they appear in integrals required to compute A \mathbf{A} . Recall that the expansion of 1 / ԉ 1/\char"0509 was used to find the multipole expansion of V V in Chapter 3.4 of Griffiths (so as to avoid having to integrate to find V V at points for which r > r r>r' ). The integrals for A \mathbf{A} have a 1 / ԉ 1/\char"0509 , and so we can use the multipole expansion to find an equation for A \mathbf{A} that allows us to avoid having to integrate to find A \mathbf{A} (and also B \mathbf{B} because it can be computed from A \mathbf{A} ).

A second reason that A \mathbf{A} is useful is that we can write 2 A = μ o J \nabla^2\mathbf{A}=-\mu_o\mathbf{J} , which is the analog to the Poisson equation 2 V = ρ / ϵ o \nabla^2V=-\rho/\epsilon_o . Sometimes we can use the boundary value techniques for solving Poisson’s equation for solving 2 A = μ o J \nabla^2\mathbf{A}=-\mu_o\mathbf{J} (which is actually three equations, each which have the form of Poisson’s equation: 2 A x = μ o J x \nabla^2A_x=-\mu_oJ_x , 2 A y = μ o J y \nabla^2A_y=-\mu_oJ_y , 2 A z = μ o J z \nabla^2A_z=-\mu_oJ_z .)

Finally, the vector potential appears as a natural quantity in the Lagrangian in classical mechanics and in many equations in quantum mechanics. This is discussed in detail in 15-4 in the Feynman Lectures on Physics.

Computing B \mathbf{B} given A \mathbf{A} requires only the evaluation of the curl of A \mathbf{A} .

If A = α sin θ ϕ ^ r 2 \displaystyle\mathbf{A}=\alpha \frac{\sin\theta \hat{\boldsymbol{\phi}}}{r^2} , where α \alpha is a constant, find B \mathbf{B}

Answer

Prior to computing the curl, it is useful to write out the scalar compoents of the vector to be curled, which are A r = 0 A_r=0 , A θ = 0 A_\theta=0 , and A ϕ = α sin θ / r 2 A_\phi=\alpha \sin\theta/r^2 .

The curl of a vector A \mathbf{A} in spherical coordinates is

× A = 1 r sin θ ( θ ( A ϕ sin θ ) A θ ϕ ) r ^ + 1 r ( 1 sin θ A r ϕ r ( r A ϕ ) ) θ ^ + 1 r ( r ( r A θ ) A r θ ) ϕ ^ \boldsymbol{\nabla}\times \mathbf{A} = {\frac {1}{r\sin \theta }}\left({\frac {\partial }{\partial \theta }}\left(A_{\phi }\sin \theta \right) - {\frac {\partial A_{\theta }}{\partial \phi }}\right) {\hat {\mathbf {r} }} + {\frac {1}{r}}\left({\frac {1}{\sin \theta }}{\frac {\partial A_{r}}{\partial \phi }} - {\frac {\partial }{\partial r}}\left(rA_{\phi }\right)\right) {\hat {\boldsymbol {\theta }}} + {\frac {1}{r}}\left({\frac {\partial }{\partial r}}\left(rA_{\theta }\right) - {\frac {\partial A_{r}}{\partial \theta }}\right) {\hat {\boldsymbol {\phi }}}

Of the six terms involving partial derivatives, only two are non–zero.

× A = 1 r sin θ ( θ ( A ϕ sin θ ) 0 ) r ^ + 1 r ( 0 r ( r A ϕ ) ) θ ^ + 1 r ( 0 0 ) ϕ ^ \boldsymbol{\nabla}\times \mathbf{A} = {\frac {1}{r\sin \theta }}\left({\frac {\partial }{\partial \theta }}\left(A_{\phi }\sin \theta \right) - 0\right) {\hat {\mathbf {r} }} + {\frac {1}{r}}\left(0 - {\frac {\partial }{\partial r}}\left(rA_{\phi }\right)\right) {\hat {\boldsymbol {\theta }}} + {\frac {1}{r}}\left(0 - 0\right){\hat {\boldsymbol {\phi }}}

Evaluation gives

B = × A = α r 3 ( 2 cos θ r ^ + sin θ θ ^ ) \mathbf{B}=\displaystyle\boldsymbol{\nabla}\times \mathbf{A} = \frac{\alpha}{r^3}\left(2\cos\theta{\hat {\mathbf {r} }}+\sin\theta\hat{\boldsymbol{\theta}}\right)

This B \mathbf{B} has the same form as a magnetic dipole in spherical coordinates and unit vectors; we can conclude that this vector potential is that for a magnetic dipole for which the current system is a small loop of area A A centered on the origin in the x x y y plane if α = μ o I A / 4 π \alpha = \mu_oIA/4\pi .

If A = α ϕ ^ \mathbf{A}= \alpha\hat{\boldsymbol{\phi}} , where α \alpha is a constant, what is B \mathbf{B} ?

Answer

The curl of a vector A \mathbf{A} in spherical coordinates is

× A = 1 r sin θ ( θ ( A ϕ sin θ ) A θ ϕ ) r ^ + 1 r ( 1 sin θ A r ϕ r ( r A ϕ ) ) θ ^ + 1 r ( r ( r A θ ) A r θ ) ϕ ^ \displaystyle\boldsymbol{\nabla}\times \mathbf{A} = {\frac {1}{r\sin \theta }}\left({\frac {\partial }{\partial \theta }}\left(A_{\phi }\sin \theta \right) - {\frac {\partial A_{\theta }}{\partial \phi }}\right) {\hat {\mathbf {r} }} + {\frac {1}{r}}\left({\frac {1}{\sin \theta }}{\frac {\partial A_{r}}{\partial \phi }} - {\frac {\partial }{\partial r}}\left(rA_{\phi }\right)\right) {\hat {\boldsymbol {\theta }}} + {\frac {1}{r}}\left({\frac {\partial }{\partial r}}\left(rA_{\theta }\right) - {\frac {\partial A_{r}}{\partial \theta }}\right) {\hat {\boldsymbol {\phi }}}

In this problem, A r = A θ = 0 A_r=A_\theta=0 and A ϕ = α A_\phi=\alpha .

Of the six terms involving partial derivatives, only two are non–zero, so

× A = 1 r sin θ ( θ ( A ϕ sin θ ) 0 ) r ^ + 1 r ( 0 r ( r A ϕ ) ) θ ^ + 1 r ( 0 0 ) ϕ ^ \displaystyle\boldsymbol{\nabla}\times \mathbf{A} = {\frac {1}{r\sin \theta }}\left({\frac {\partial }{\partial \theta }}\left(A_{\phi }\sin \theta \right) - 0\right) {\hat {\mathbf {r} }} + {\frac {1}{r}}\left(0 - {\frac {\partial }{\partial r}}\left(rA_{\phi }\right)\right) {\hat {\boldsymbol {\theta }}} + {\frac {1}{r}}\left( 0 - 0\right) {\hat {\boldsymbol {\phi }}} .

Evaluation gives

B = α r tan θ r ^ α r θ ^ \displaystyle\mathbf{B}= \frac{\alpha}{r\tan\theta}\hat {\mathbf {r} } - \frac{\alpha}{r}\hat{\boldsymbol {\theta }}

One could also do the same calculation in cylindrical coordinates using

× A = ( 1 s A z ϕ A ϕ z ) s ^ + ( A s z A z s ) ϕ ^ + 1 s ( ( s A ϕ ) s A s ϕ ) z ^ \displaystyle\boldsymbol{\nabla}\times \mathbf{A} = \left({\frac {1}{s }}{\frac {\partial A_{z}}{\partial \phi }}-{\frac {\partial A_{\phi }}{\partial z}}\right) {\hat {\boldsymbol {s }}} + \left({\frac {\partial A_{s}}{\partial z}}-{\frac {\partial A_{z}}{\partial s}}\right) {\hat {\boldsymbol {\phi }}} + {\frac {1}{s}}\left({\frac {\partial \left(s A_{\phi }\right)}{\partial s}}-{\frac {\partial A_{s}}{\partial \phi }}\right) {\hat {\mathbf {z} }}

In this case,

B = α s z ^ \displaystyle\mathbf{B}=\frac{\alpha}{s}\mathbf{\hat{z}} .

Using z ^ = cos θ r ^ sin θ θ ^ \mathbf{\hat{z}} = \cos\theta \hat {\mathbf {r} } - \sin\theta \hat {\boldsymbol {\theta} } and s = r sin θ s=r\sin\theta , this is

B = α r sin θ ( cos θ r ^ sin θ θ ^ ) = α r tan θ r ^ α r θ ^ \displaystyle\mathbf{B}=\frac{\alpha}{r\sin\theta}\left(\cos\theta \hat {\mathbf {r} } - \sin\theta \hat {\boldsymbol {\theta} }\right)=\frac{\alpha}{r\tan\theta}\hat {\mathbf {r} } - \frac{\alpha}{r}\hat{\boldsymbol {\theta }} ,

which is the same as that found using the curl in spherical coordinates.

If A = α y x ^ \mathbf{A} = -\alpha y \mathbf{\hat{x}} for y > 0 y\gt 0 and A = + α y x ^ \mathbf{A} = +\alpha y \mathbf{\hat{x}} for y < 0 y\lt 0 , where α \alpha is a constant,

  1. find B \mathbf{B} and

  2. plot B x ( y ) B_x(y) .

  3. Based on the plot for 2., what is the current system that produced this B \mathbf{B} ?

Answer

× A = ( A z y A y z ) x ^ + ( A x z A z x ) y ^ + ( A y x A x y ) z ^ \boldsymbol{\nabla}\times \mathbf{A} = \left(\frac{\partial A_z }{\partial y} - \frac{\partial A_y }{\partial z} \right)\mathbf{\hat{x}} + \left(\frac{\partial A_x }{\partial z} - \frac{\partial A_z }{\partial x} \right)\mathbf{\hat{y}} + \left(\frac{\partial A_y }{\partial x} - \frac{\partial A_x }{\partial y} \right)\mathbf{\hat{z}}

A x = 0 A_x=0 , A y = 0 A_y=0 , and A z = α y A_z=\mp \alpha y

Inserting zeros for terms involving partial derivative of A x A_x and A y A_y gives

× A = ( A z y 0 ) x ^ + ( 0 A z x ) y ^ + ( 0 + 0 ) z ^ \boldsymbol{\nabla}\times \mathbf{A} = \left(\frac{\partial A_z }{\partial y} - 0 \right)\mathbf{\hat{x}} + \left(0 - \frac{\partial A_z }{\partial x} \right)\mathbf{\hat{y}} + \left(0 + 0\right)\mathbf{\hat{z}}

Evaluation gives

B = × A = α x ^ \mathbf{B} = \boldsymbol{\nabla}\times \mathbf{A} = \mp\alpha\mathbf{\hat{x}}

This is the field of a sheet of current in the x x y y plane with current flowing in the + z ^ +\mathbf{\hat{z}} direction. (To see this, draw out the bound current sheets and see HW #11.1.

The general equation for the vector potential for a magnetic dipole is

A = μ o 4 π m × r ^ r 2 \mathbf{A}=\frac{\mu_o}{4\pi}\frac{\mathbf{m}\times\hat{\mathbf{r}}}{r^2}

If m = m o x ^ \mathbf{m}=m_o\mathbf{\hat{x}} , find B \mathbf{B} in cartesian coordinates with cartesian unit vectors. Note that you can check your answer using equation 5.89 of Griffiths 4th edition:

B = μ o 4 π 1 r 3 [ 3 ( m r ^ ) r ^ m ] \mathbf{B} = \frac{\mu_o}{4\pi}\frac{1}{r^3}\left[3(\mathbf{m}\boldsymbol{\cdot}\hat{\mathbf{r}})\hat{\mathbf{r}} - \mathbf{m}\right]

Answer

Method 1

In Magnetic Dipoles, the equation for a with dipole m = I π b 2 z ^ \mathbf{m}=I\pi b^2\mathbf{\hat{z}} was given as

B = μ o 4 π I π b 2 r 5 ( 3 x z x ^ + 3 y z y ^ + ( 3 z 2 r 2 ) z ^ ) \displaystyle\mathbf{B}=\frac{\mu_o}{4\pi}\frac{I\pi b^2}{r^5}\left(3xz\hat{\mathbf{x}}+3yz\hat{\mathbf{y}}+(3z^2-r^2)\hat{\mathbf{z}}\right)

Swapping z z and x x and replacing I π b 2 I\pi b^2 with m o m_o gives the answer to this problem:

B = μ o 4 π m o r 5 [ ( 3 x 2 r 2 ) x ^ + 3 x y y ^ + 3 x z z ^ ] \displaystyle\mathbf{B}=\frac{\mu_o}{4\pi}\frac{m_o}{r^5}\left[(3x^2-r^2)\hat{\mathbf{x}}+3xy\hat{\mathbf{y}}+3xz\hat{\mathbf{z}}\right]

Method 2

Using r ^ = r / r \mathbf{\hat{r}}=\mathbf{r}/r and r = x x ^ + y y ^ + z z ^ \mathbf{r}=x\mathbf{\hat{x}}+y\mathbf{\hat{y}}+z\mathbf{\hat{z}} ,

A = μ o m o 4 π x ^ × r ^ r 3 = μ o m o 4 π x ^ × ( x x ^ + y y ^ + z z ^ ) r 3 = μ o m o 4 π ( z y ^ + y z ^ r 3 ) \displaystyle \mathbf{A}=\frac{\mu_om_o}{4\pi}\frac{\mathbf{\hat{x}}\times \mathbf{\hat{r}}}{r^3}=\frac{\mu_om_o}{4\pi}\frac{\mathbf{\hat{x}}\times (x\mathbf{\hat{x}}+y\mathbf{\hat{y}}+z\mathbf{\hat{z}})}{r^3}=\frac{\mu_om_o}{4\pi}\left(\frac{-z\mathbf{\hat{y}}+y\mathbf{\hat{z}}}{r^3}\right)

Written fully in cartesian coordinates, this is

A = μ o m o 4 π ( z y ^ + y z ^ ( x 2 + y 2 + z 2 ) 3 / 2 ) \displaystyle \mathbf{A}=\frac{\mu_om_o}{4\pi}\left(\frac{-z\mathbf{\hat{y}}+y\mathbf{\hat{z}}}{\left(x^2+y^2+z^2\right)^{3/2}}\right)

Using this and

× A = ( A z y A y z ) x ^ + ( A x z A z x ) y ^ + ( A y x A x y ) z ^ \displaystyle\boldsymbol{\nabla}\times \mathbf{A} = \left(\frac{\partial A_z }{\partial y} - \frac{\partial A_y }{\partial z} \right)\mathbf{\hat{x}} + \left(\frac{\partial A_x }{\partial z} - \frac{\partial A_z }{\partial x} \right)\mathbf{\hat{y}} + \left(\frac{\partial A_y }{\partial x} - \frac{\partial A_x }{\partial y} \right)\mathbf{\hat{z}}

will give the same answer as given above.

There are two general types of problems related to computing A \mathbf{A}

  1. if B \mathbf{B} is known, and

  2. if B \mathbf{B} is not known

If B \mathbf{B} is known, we can sometimes (a.) find A \mathbf{A} by guessing what A \mathbf{A} will give B = × A \mathbf{B}=\boldsymbol{\nabla}\times \mathbf{A} , (b.) use B = × A \mathbf{B}=\boldsymbol{\nabla}\times \mathbf{A} , and (c.) and additional information, or using A d l = B d l \oint \mathbf{A}\boldsymbol{\cdot} d\mathbf{l}=\int \mathbf{B}\boldsymbol{\cdot} d\mathbf{l} . As an example of (c.), see Example 5.12 of Griffiths.

If B \mathbf{B} is not known, we can always use direct integration to find A \mathbf{A} . Often the integral encountered will be one that was previously used to find V V using direct integration. Most generally, the integral will not have a closed–form solution, and we will write the integrant of A \mathbf{A} as a power series as was done in the monopole expansion for V V .

Suppose that we know B \mathbf{B} for an infinitely long wire along the z z –axis with I = I z ^ \mathbf{I}=I\mathbf{\hat{z}} . It can be argued using symmetry that for a certain choice of integration path for the line integral that

A d l = B d a \displaystyle\oint \mathbf{A}\boldsymbol{\cdot} d\mathbf{l}=\int \mathbf{B}\boldsymbol{\cdot} d\mathbf{a}

simplifies to

A z ( s ) L A ( s o ) L = L s o s B ϕ d s \displaystyle A_z(s)L-A(s_o)L = L\int_{s_o}^{s} B_{\phi} ds'

Using B ϕ = μ o 2 π I s \displaystyle B_\phi = \frac{\mu_o}{2\pi}\frac{I}{s} gives

A z ( s ) = A z ( s o ) μ o I 2 π ln s s o \displaystyle A_z(s)=A_z(s_o)-\frac{\mu_oI}{2\pi}\ln\frac{s}{s_o}

Suppose B \mathbf{B} was not known. We can solve for A \mathbf{A} by analogy. For a finite wire along the z z axis that is centered on the origin and has a length L L , the vector potential is

A = I ( r ) ԉ d l \displaystyle \mathbf{A}=\int \frac{\mathbf{I}(\mathbf{r}')}{\char"0509}dl'

Here, d l = d z dl'=dz' (the d l dl' here is the differential length along the wire; in A d l \oint \mathbf{A}\boldsymbol{\cdot} d\mathbf{l} used above, d l dl is a path of integration). Using I = I z ^ \mathbf{I}=I\mathbf{\hat{z}} , we have

A z = μ o 4 π L / 2 L / 2 I ԉ d z \displaystyle A_z=\frac{\mu_o}{4\pi}\int_{-L/2}^{L/2} \frac{I}{\char"0509}dz'

We have encountered an integral like this before. If, instead of a wire, we have a uniformly charged line of charge density λ \lambda , then

V = 1 4 π ϵ o L / 2 L / 2 λ ԉ d z \displaystyle V=\frac{1}{4\pi\epsilon_o}\int_{-L/2}^{L/2}\frac{\lambda}{\char"0509}dz'

From this, we can conclude that we can take the answer for V V and replace λ / ϵ o \lambda/\epsilon_o with μ o I \mu_oI to get A z A_z .

For an infinitly long wire, we can’t actually use the above equation to find V V . We can only compute the potential difference V ( s ) V ( s o ) = s o s E d s ^ V(s)-V(s_o)=-\int_{s_o}^{s}\mathbf{E}\boldsymbol{\cdot} d\mathbf{\hat{s}} . For an infinite wire, E = ( λ / 2 π ϵ o ) s ^ / s \mathbf{E}=(\lambda/2\pi\epsilon_o)\mathbf{\hat{s}}/s and integration gives V ( s ) V ( s o ) = ( λ / 2 π ϵ o ) ln ( s / s o ) V(s)-V(s_o)=-(\lambda/2\pi\epsilon_o)\ln(s/s_o) . Using the replacement of λ / ϵ o \lambda/\epsilon_o with μ o I \mu_oI gives

A z ( s ) = A z ( s o ) μ o I 2 π ln s s o \displaystyle A_z(s)=A_z(s_o)-\frac{\mu_oI}{2\pi}\ln\frac{s}{s_o}

as found earlier.

For a segment of wire that extends from L / 2 -L/2 to L / 2 L/2 on the z z –axis with a current that flows in the + z +z direction, find A ( x ) \mathbf{A}(x) .

Answer

In general,

A ( r ) = μ o 4 π I ( r ) ԉ d l \displaystyle \mathbf{A}(\mathbf{r})=\frac{\mu_o}{4\pi}\int \frac{\mathbf{I}(\mathbf{r}')}{\char"0509}dl'

For this problem,

A ( x ) = μ o 4 π L / 2 L / 2 I z ^ x 2 + z 2 d z \displaystyle \mathbf{A}(x)=\frac{\mu_o}{4\pi}\int_{-L/2}^{L/2}\frac{I\mathbf{\hat{z}}}{\sqrt{x^2+z'^2}}dz'

Let u = x z u=xz' , then

A = z ^ μ o I 4 π x x L / 2 x L / 2 x d u 1 + u 2 \displaystyle\mathbf{A}=\mathbf{\hat{z}}\frac{\mu_oI}{4\pi}\frac{x}{|x|}\int_{-L/2x}^{L/2x} \frac{du}{\sqrt{1+u^2}}

The integral can be evaluated using an integral table.

u f u o d u 1 + u 2 = tanh 1 ( u 1 + u 2 ) u f u o \displaystyle\int_{u_f}^{u_o}\frac{du}{\sqrt{1+u^2}}=\tanh^{-1}\left(\frac{u}{\sqrt{1 + u^2}}\right)\Bigg|_{u_f}^{u_o}

Starting with

A = μ o 4 π I d l ԉ \mathbf{A} = \frac{\mu_o}{4\pi}\int \frac{\mathbf{I}dl'}{\char"0509}

set up the integral that must be solved to find A ( x , y , z ) \mathbf{A}(x,y,z) due to a loop with current I I of radius b b that lies in the x y x–y plane and is centered on the origin.

Answer

I = I ϕ ^ \mathbf{I}=I\hat{\boldsymbol{\phi}}

d l = b d ϕ dl'= bd\phi'

r = b s ^ \mathbf{r}'=b\hat{\mathbf{s}}

r = x x ^ + y y ^ + z z ^ \mathbf{r}=x\hat{\mathbf{x}}+y\hat{\mathbf{y}}+z\hat{\mathbf{z}}

To do the integration, we need to convert non-cartesian unit vectors to cartesian unit vectors.

r = b s ^ = b cos ϕ x ^ + b sin ϕ y ^ \mathbf{r}'=b\hat{\mathbf{s}}=b\cos\phi'\hat{\mathbf{x}}+b\sin\phi'\hat{\mathbf{y}}

I = I ( sin ϕ x ^ + cos ϕ y ^ ) \mathbf{I}=I(-\sin\phi'\hat{\mathbf{x}}+\cos\phi'\hat{\mathbf{y}})

ԉ = r r = ( x b cos ϕ ) 2 + ( y b sin ϕ ) 2 + z 2 \char"0509=|\mathbf{r}-\mathbf{r}'|=\sqrt{(x-b\cos\phi')^2+(y-b\sin\phi')^2+z^2}

Substitution of these three equations into

A = μ o 4 π I d l ԉ \displaystyle \mathbf{A} = \frac{\mu_o}{4\pi}\int \frac{\mathbf{I}dl'}{\char"0509}

gives

A = μ o I b 4 π 0 2 π d ϕ ( sin ϕ x ^ + cos ϕ y ^ ) ( x b cos ϕ ) 2 + ( y b sin ϕ ) 2 + z 2 \displaystyle\mathbf{A} = \frac{\mu_oIb}{4\pi}\int_0^{2\pi} \frac{d\phi'(-\sin\phi'\hat{\mathbf{x}}+\cos\phi'\hat{\mathbf{y}})}{\sqrt{(x-b\cos\phi')^2+(y-b\sin\phi')^2+z^2}}

This equation would be the answer to a “set up the integral problem”.

1. Use the binomial expansion on 1 / ( x b cos ϕ ) 2 + ( y b sin ϕ ) 2 + z 2 1/\sqrt{(x-b\cos\phi')^2+(y-b\sin\phi')^2+z^2} to show that to leading order in 1 / r 1/r

A ( x , y , z ) μ o 4 π I π b 2 r 2 ( y r x ^ + x r y ^ ) \mathbf{A}(x,y,z) \simeq \frac{\mu_o}{4\pi}\frac{I\pi b^2}{r^2}\left(-\frac{y}{r}\hat{\mathbf{x}}+\frac{x}{r}\hat{\mathbf{y}}\right)

where r 2 = x 2 + y 2 + z 2 r^2=x^2+y^2+z^2 .

2. Use the above equation for A \mathbf{A} to compute B \mathbf{B} .

3. What is × B \boldsymbol{\nabla}\times\mathbf{B} at r = 2 b r=2b ? (You can answer this without doing any partial derivatives.)