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Convergent cross-mapping (CCM) is a technique for computing specific kinds of correlations between sets of
times series. It was introduced by Sugihara et al. [Science 338, 496 (2012).] and is reported to be “a necessary con-
dition for causation” capable of distinguishing causality from standard correlation. We show that the relationships
between CCM correlations proposed by Sugihara et al. do not, in general, agree with intuitive concepts of “driving”
and as such should not be considered indicative of causality. It is shown that the fact that the CCM algorithm
implies causality is a function of system parameters for simple linear and nonlinear systems. For example, in a
circuit containing a single resistor and inductor, both voltage and current can be identified as the driver depending
on the frequency of the source voltage. It is shown that the CCM algorithm, however, can be modified to identify
relationships between pairs of time series that are consistent with intuition for the considered example systems
for which CCM causality analysis provided nonintuitive driver identifications. This modification of the CCM
algorithm is introduced as “pairwise asymmetric inference” (PAI) and examples of its use are presented.
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I. INTRODUCTION

Modern time series analysis includes techniques meant to
discern “driving” relationships between different data sets.
These techniques have found application in a wide range of
fields including neuroscience (e.g., Ref. [1]), economics (e.g.,
Refs. [2,3]), climatology (e.g., Ref. [4]), and others. General
casual relationships in time series data are also being studied
in an effort to understand causality itself (e.g., Ref. [5]).

To date, most techniques for “causal inference” in time
series data fall into three broad categories: those related
to transfer entropy, those related to Granger causality, and
those related to lagged cross-correlation. Transfer entropy
(introduced in Ref. [6]) and Granger causality (introduced in
Ref. [7]) are known to be equivalent under certain conditions
[8]. In this article, we investigate a casual inference technique,
called convergent cross-mapping (CCM), that was recently
introduced by Sugihara et al. [9]. (Currently, there is no
evidence that CCM is related to either transfer entropy or
Granger causality.)

Statements of causality beyond simple correlation that are
derived from time series data alone fall under the broad
term “time series causality.” Most known time series causal-
ity measures have well-documented shortcomings. Granger
causality (and its extensions) are model-based approaches
that depend on, among other things, the validity of the
model [1,10] and separability [9]. Transfer entropy, mutual
information, and other information theoretic techniques rely on
estimating entropies from empirical data, which may involve
the computationally difficult task of estimating transition
probability densities and generally require large amounts
of data [11,12]. Lagged cross-correlation techniques can be
unreliable in the presence of strongly autocorrelated data [13],
and partial directed coherence (which is related to lagged
cross-correlation techniques) can lead to spurious conclusions
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given both simulated time series with known dynamics and
empirical data [14]. The results documented here show that the
recently introduced CCM technique also has shortcomings; in
particular, the CCM technique may lead to conclusions that do
not agree with intuitive notions of causality.

CCM is described as a technique that can be used to identify
“causality” between time series and is intended to be useful
in situations where Granger causality is known to be invalid
(i.e., in dynamic systems that are “nonseparable” [9]). CCM is
also intended to useful in determining causality in systems that
experience “mirage” correlations [9] (i.e., correlations that are
a function of time). Thus, CCM is introduced as a time series
causality technique that specifically addresses some of the
shortcomings discussed in the previous paragraph. The authors
state that CCM is a “necessary condition for causation.” It is
well known that Granger causality is not causality as it is
typically understood in physics [10,15,16]. Whether a similar
conclusion can be drawn regarding CCM causality is currently
an open question.

CCM has been used to draw conclusions regarding the “con-
troversial sardine-anchovy-temperature” problem [9], confirm
predictions of climate effects on sardines [17], compare the
driving effects of precipitation, temperature, and solar radia-
tion on the atmospheric CO2 growth rate [18], and quantify
cognitive control in developmental psychology [19]. The
technique has also been presented as a useful tool in studying
the causality of respiratory systems in insects [20]. The wide
range of applications already appearing for the relatively new
CCM technique is testament to the importance of time series
causality studies. This work presents examples in which CCM
does not provide consistent qualification of an intuitive notion
of causality. However, the domain of applicability of CCM
remains an open question; i.e., the method may work as
expected for the authors cited above despite its apparent failure
in the examples presented in this article.

We begin with a review of the work of Sugihara et al. [9],
including an extended evaluation of the coupled logistic map
example. We then introduce pairwise asymmetric inference
(PAI) and use it to show that even though CCM causality may
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not be physical causality, it can still be a useful tool in the
analysis of complex time series data.

II. CONVERGENT CROSS-MAPPING

CCM is closely related to simplex projection [21,22], which
predicts a point in the times series X at a time t + 1, labeled
Xt+1, by using the points with the most similar histories to Xt .
Similarly, CCM uses points with the most similar histories to
Xt to estimate Yt . The CCM correlation is the squared Pearson
correlation coefficient [23] between the original time series Y

and an estimate of Y made using its convergent cross-mapping
with X, which is labeled as Y |X̃:

CYX = [ρ(Y,Y |X̃)]2 .

Any pair of times series, X and Y , will have two CCM
correlations, CYX and CXY , which are compared to determine
the CCM causality. For example, Sugihara et al. [9] define a
difference of CCM correlations

� = CYX − CXY (1)

and use the sign of � to determine the CCM causality between
X and Y .

If X can be estimated using Y better than Y can be estimated
using X (e.g., if � < 0), then X is said to “CCM cause” Y .

A. CCM algorithm

The CCM algorithm [24] may be written in terms of five
steps:

(1) create the shadow manifold for X, called X̃;
(2) find the nearest neighbors to a point in the shadow

manifold at time t , which is labeled X̃t ;
(3) create weights using the nearest neighbors;
(4) estimate Y using the weights (this estimate is called

Y |X̃); and
(5) compute the correlation between Y and Y |X̃.
The steps are described in more detail below.

1. Create shadow manifold X̃

Given an embedding dimension E, the shadow manifold
of X, called X̃, is created by associating an E-dimensional
vector (also called a delay vector) to each point Xt in X, i.e.,
X̃t = (Xt,Xt−τ ,Xt−2τ , . . . ,Xt−(E−1)τ ). The first such vector
is created at t = 1 + (E − 1)τ and the last is at t = L, where
L is the number of points in the time series (also called the
library length).

2. Find nearest neighbors

The minimum number of points required for a bounding
simplex in an E-dimensional space is E + 1 [21,22]. Thus,
the set of E + 1 nearest neighbors must be found for each
shadow manifold X̃t . For each X̃t , the nearest neighbor
search results in a set of distances that are ordered by
closeness {d1,d2, . . . ,dE+1} and an associated set of times
{t̂1,t̂2, . . . ,t̂E+1}. The distances from X̃t are

di = D
(
X̃t , X̃t̂i

)
,

where D(a,b) is the Euclidean distance between vectors a
and b.

3. Create weights

Each of the E + 1 nearest neighbors are be used to compute
an associated weight. The weights are defined as

wi = ui

N
,

where ui = e−di/d1 and the normalization factor is N =∑E+1
j=1 uj .

4. Find Y |X̃
A point Yt in Y is estimated using the weights calculated

above. This estimate is

Yt |X̃ =
E+1∑

i=1

wiYt̂i .

5. Compute the correlation

The CCM correlation is defined as

CYX = [ρ(Y,Y |X̃)]2,

where ρ(A,B) is the standard Pearson’s correlation coefficient
between A and B.

The CCM algorithm depends on the embedding dimension
E and the lag time step τ . A dependence on E and τ is a
feature of most state space reconstruction (SSR) methods [25–
27], so an E and τ dependence is not unexpected. Sugihara
et al. mention that “optimal embedding dimensions” are found
using univariate SSR [9] (Supplemental Material), and other
methods for determining E and τ for SSR algorithms can be
found in the literature (e.g., [25,27,28]).

B. CCM example

Consider the example system used by Sugihara et al. [9]:

Xt = Xt−1(rx − rxXt−1 − βxyYt−1), (2)

Yt = Yt−1(ry − ryYt−1 − βyxXt−1), (3)

where the parameters rx,ry,βxy,βyx ∈ R � 0. This pair of
equations is a specific form of the two-dimensional coupled
logistic map system [29].

In this example, the CCM causality relationship between
X and Y is determined using a sampling of both the initial
conditions and the system parameters, calculating �, and
demonstrating the necessary convergence. The term conver-
gence is used here in the same sense as it was used in
Ref. [9]; i.e., “convergence means that cross-mapped estimates
improve in estimation skill with time-series length L” [30].
The dynamic parameters rx and ry are sampled from normal
distributions N (μrx,σrx) and N (μry,σry), respectively. The
initial conditions X0 and Y0 are also sampled from normal
distributions, specifically N (μx0,σx0) and N (μy0,σy0). The
coupling parameters βxy and βyx are then varied over the
interval [10−6,1] in steps of 0.02 to produce the plots seen
in Fig. 1.

Sugihara et al. consider convergence to be critically
important for determining CCM causality and note that it
is “a key property that distinguishes causation from simple
correlation” [9]. Figure 1 shows plots created with several
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FIG. 1. The dependence of Eq. (1) on the dimensionless param-
eters βxy and βyx . The white line is a contour for � = 0; black lines
are contours for � = ±0.01.

different library lengths to illustrate the convergence of � for
this example. Typically, for convenience, the (approximately)
converged CCM correlation values will be reported and proof
of convergence will be implied, rather than shown.

The idea is that βxy > βyx intuitively implies Y “drives” X

more than X “drives” Y . Stated more formally, βxy > βyx ⇒
� > 0, which is reported as “Y CCM causes X.” Likewise,
βxy < βyx implies X CCM causes Y and βxy = βyx implies
no CCM causality in the system. It will be shown below that
CCM causality is not necessarily related to causality as it is
typically understood in physics.

III. SIMPLE EXAMPLE SYSTEMS

The usefulness of the CCM algorithm in identifying drivers
among sets of time series can be explored by using simple
example systems. The benefit to this approach is that the driver
is known beforehand. Thus, CCM causality can be validated by
comparison against intuition in simple systems where intuition
can be trusted. Intuitively identifying the driving signal in the
coupled logistic map presented in Ref. [9] is difficult due
to the complexity of the system. Commonly used chaotic
dynamic systems such as the Lorentz system present similar
difficulties. Thus, the examples here are intended to explore
(and validate) the CCM method by comparing the results to
expected conclusions.

Each of the following examples intuitively supports the
conclusion that X drives Y , and CCM analysis (with E = 3
and τ = 1) yields values of � that support conclusions that do
not agree with intuition for all parameter choices.

A. Linear example

Consider the linear example dynamical system of

Xt = sin(t), (4)

Yt = Xt−1 + Bηt , (5)

with B ∈ R � 0 and ηt ∼ N (0,1). Specifically, consider B ∈
[0,2] in increments of 0.02. The noise term Bηt is used to show
how the conclusions drawn with the CCM algorithm depend
on the parameters of the system. In this case, the response
system Y is just a lagged version of the driving signal with
varying levels of standard Gaussian noise applied at each time
step. Figure 2 shows � for this example given a library length
of L = 2000.

Figure 2(b) shows (for B = 1.66) that � is more negative
at shorter library lengths but converges to a point near
zero as the library length is increased. The convergence
of CCM correlations is emphasized [9], so the seemingly
counterintuitive behavior of � (and CXY and CYX) in Fig. 2
implies that the CCM correlations may not be a reliable
measure of “driving” (at least not the intuitive definition) for
this simple linear example system.

The expected conclusion that X drives Y , corresponding to
X CCM causes Y , requires � < 0. But it can be seen from
Fig. 2(a) that the sign of � depends on B. Given that the
intuitive conclusion of X drives Y in Eq. (4) does not depend
on B, it would seem that � does not consistently reflect the
intuitive conclusion in this linear example system.

These results do not imply that the primary failure of CCM
causality is not being reliable at certain signal-to-noise ratios.
The Eq. (4) system with no noise, i.e., B = 0, leads to � =
2.5 × 10−3, which does not agree with intuition. However,
Fig. 2 shows CCM causality for this example, which does
agree with intuition for certain noise levels. The key idea is that
the agreement of CCM causality with intuition depends on the
system parameters. The value of � is strongly dependent on the
system parameters even in noise-free systems (see Sec. III C).
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FIG. 2. Dependence of the sign of � from Eq. (1) on the
dimensionless parameter B. (a) The dimensionless � is calculated
as described in the text; (b) The dependence of � on library length L

(dimensionless) is shown for the points B = 1.66.
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FIG. 3. (Color online) The sign of �, and thus the CCM causality,
depends on the dimensionless parameters A, B, and C. Contour lines
indicate where � = 0.

B. Nonlinear example

Consider the nonlinear dynamical system of

Xt = sin(t), (6)

Yt = AXt−1(1 − BXt−1) + Cηt , (7)

with A,B,C ∈ R � 0 and ηt ∼ N (0,1). Specifically, consider
A,B,C ∈ [0,5] in increments of 0.5. Figure 3 shows � for
specific values of C for a library length of L = 2000. As in
the previous example, the expectation for this system is that �

should be negative, independent of the parameters A, B, and
C. However, it can be seen from the plots that the sign of �

can depend on all three parameters. Thus, this simple nonlinear
example leads to a conclusion similar to the previous linear
example, i.e., � does not reliably reflect intuitive notions of
driving.

C. Resistor-inductor circuit example

Both of the previous examples included a noise term, ηt .
The failure of CCM analysis to give expected conclusions
about the drivers in the previous examples is not due to a
limitation of the algorithm with respect to noise. This can be
investigated by considering a system without noise. Consider a
series circuit containing a resistor, inductor, and time-varying
voltage source related by

dI

dt
= V (t)

L
− R

L
I, (8)

where I is the current at time t , V (t) = sin(�t) is the voltage at
time t , R is the resistance, and L is the inductance. Equation (8)
was solved using the ode45 integration function in MATLAB.
The time series V (t) is created by defining values at fixed
points and using linear interpolation to find the time steps
required by the ODE solver.

Consider the situation where L = 10 H and R = 5 ohm
are constant. Physical intuition is that V drives I , and so we
expect to find that V CCM causes I (i.e., CV I > CIV or � =
CV I − CIV > 0).

Consider evaluating the CCM correlations CV I and CIV for
each � ∈ [0.01,2.0] in steps of 0.01. The CCM correlations
are found using E = 2 and τ = 1 and are used to calculate � =

0 0.5 1 1.5 2
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15
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Δ 
= 

C
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I−C
IV

FIG. 4. � dependence on � for a series RL circuit with a
sinusoidal voltage source. The sign of � implies V CCM causes
I and I CCM causes V depending on the voltage frequency.

CV I − CIV , which is plotted in Fig. 4. � does not consistently
agree with intuition in this example either. Changing the
embedding dimension, E, used to calculate � leads to plots
that are different than in Fig. 4, but in all of the cases tested
(i.e., E = 2,3,4), the sign of � changes over the domain
� ∈ [0.1,1.5].

The resistance and inductance of the circuit are fixed and
the voltage is varied from 1 × 10−2 to 2.0 V in discrete steps of
0.01 V as described by Eq. (8). Physically changing the voltage
and witnessing a resulting change in the current is enough to
convince most people that the voltage “drives” the current.
Rigorous statistical hypothesis testing can be performed to
strengthen the confidence in such a conclusion. Yet, from
Fig. 4, the voltage does not consistently “CCM cause” the
current as � is changed.

It may be argued that the relatively small values (as
compared to the previous examples) of � plotted in Fig. 4
indicate that the correct conclusion should be either (1) there
is no CCM causality in the system or (2) CCM causality is not
applicable to this system. However, conclusion (1) conflicts
with the intuitive notion of an RL circuit as a strongly driven
system and conclusion (2) conflicts with identifying CCM
causality as a general qualifier of “driving” in dynamical
systems.

IV. PAIRWISE ASYMMETRIC INFERENCE

Consider the example system of Eq. (2) with ry = ry =
3.7, X0 = 0.2, Y0 = 0.4, βxy = 0, and βyx = 0.32. These
parameters correspond to Figs. 3(c) and 3(d) of Ref. [9] (with
E = 2, τ = 1, and L = 1000). Plots of the correlation between
X and X|Ỹ (i.e., X estimated using the weights found from
the shadow manifold of Y ) as well as Y and Y |X̃ are shown
in Fig. 5. This leads to � = CYX − CXY ≈ 0.11 − 0.97 =
−0.86 < 0, which implies X CCM causes Y . This result agrees
with intuition because βxy = 0 < βyx = 0.32.

The correlations shown in Fig. 5 are not the only correla-
tions that can be tested. Consider, for example, the correlation
between X and the corresponding X|X, which is estimated
using weights found from the shadow manifold of X itself.
The time series X may also be estimated using a multivariate
shadow manifold consisting of points from both X and Y

[17]. For example, an E + 1 dimensional point in the a
multivariate shadow manifold constructed using both X and
Y may be defined as X̃t = (Xt,Xt−τ ,Xt−2τ , . . . ,Xt−(E−1)τ ,Yt ).
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FIG. 5. Correlation plots between a given time series and its
convergent cross-mapped estimate. (a) Reproduction of Fig. 3(c) from
Ref. [9]. (b) Reproduction of Fig. 3(d) from Ref. [9].

An estimate of X using weights from a shadow manifold using
this specific construction will be referred to as X|(XY ) and the
correlation between this estimate and the original time series
will be labeled CX(XY ). See Fig. 6.

A difference in CCM correlations similar to � can be
defined using the multivariate embedding. Consider �′ =
CY (YX) − CX(XY ). It might be argued, in close parallel to the
arguments given in Ref. [9] for �, that an intuitive definition
of “driving” might be captured by the sign of �′. For example,
if �′ < 0, then the single time step of Y added to the delay
vectors constructed from X create stronger estimators of X

than the single time step of X added to the delay vectors
constructed from Y do for Y . Thus, it might be argued that
Y contains more “information” about X, which leads to the
conclusion X drives Y . The example system and parameters
(including E, τ , and L) described at the beginning of this
section leads to �′ ≈ −3 × 10−4, which agrees with the pre-
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FIG. 6. Stronger correlations, as compared to Fig. 5, can be seen
between a time series and its estimate when the shadow manifold
includes points from the time series it is estimating.
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FIG. 7. (a) Reproduction of Fig. 2(a) using PAI rather than CCM.
�′ < 0 ∀B, implying X “PAI drives” Y . (b) Reproduction of Fig. 2(c)
using PAI rather than CCM. �′ does not display the apparent erratic
behavior seen in � in Fig. 2.

viously discussed conclusions of “X CCM causes Y ” and “X
drives Y .” Using the multivariate embedding described above
to explore “driving” relationships between pairs of time series
will be referred to as pairwise asymmetric inference or PAI.

Consider a comparison of PAI and CCM given the linear
example system from above, i.e., Eq. (4). Figure 7 shows �′ as
a function of B using of the same E, τ , L, and step sizes as was
used to produce Fig. 2. �′ < 0 ∀B in the domains shown in the
figure. Thus, the sign of �′ is in agreement with an intuitive
notion of driving more consistently than �. �′ is significantly
smaller than �, which is expected since the correlation of
X and Y with their “self-estimation” counterparts of X|X̃
and Y |Ỹ are initially very high, even without the multivariate
additions. But if the concept of driving is determined solely
on the sign of �′, then, at least for the simple linear example
presented here, PAI is a consistent qualifier of “driving.”
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FIG. 8. Reproduction of Fig. 3 using PAI rather than CCM. �′ <

0 ∀A,B,C, implying X “PAI drives” Y consistently in the plotted
parameter domains.
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FIG. 9. Reproduction of Fig. 4 using PAI rather than CCM. �′ <

0 ∀�, implying V “PAI drives” I consistently across the plotted
domain for �.

Reproducing Fig. 2(c) using PAI shows an apparent
reduction in some of the erratic behavior seen in CCM. See
Fig. 7.

The conclusions that PAI agrees with intuition more
consistently than CCM is also supported by the nonlinear
example system, Eq. (6). Figure 8 plots �′ as a function of
A, B, and C using of the same E, τ , L, and step sizes that
were used to produce Fig. 8. Again in contrast to the CCM
figure, PAI agrees with intuition for all the plotted values of
A, B, and C (i.e., �′ < 0 ∀A,B,C in the domains shown).

Finally, a comparison of PAI and CCM for the RL circuit
example leads to similar conclusions. The expectation is the V

drives I ; thus, it is expected that V PAI drives I , which implies
�′ = CV (V I ) − CI (IV ) > 0 (which is what is observed). See
Fig. 9.

V. EMPIRICAL DATA

The CCM and PAI methods can also be tested using
empirical datasets with known causal relationships. Consider
the measurements of altitude (in meters) paired with the mean
temperature (from 1961 to 1990) at that altitude (in Celsius)
[31]. Intuition is that the altitude drives the temperature in
this scenario. Let A indicate the altitude and T indicate
the mean temperature. For the CCM algorithm, the intuitive
result is that � = CT A − CAT < 0 and for PAI that �′ =
CT (T A) − CA(AT ) < 0. Figure 10 shows � and �′ calculated
for various library lengths, L, using E = 4 and τ = 1. The
CCM algorithm converges to � = 7.7 × 10−3 > 0 as the
library length is increased, and the PAI algorithm converges
to �′ = −8.4 × 10−3 < 0 as the library length is increased.
Thus, for this empirical data set, PAI agrees with intuition
and CCM does not, as was the case for the synthetic data sets
presented in the previous subsections.

VI. CONCLUSION

In this work we have shown that the recently introduced
and frequently used convergent cross-mapping (CCM) method
can lead to conclusions about a driver in a system that do not
agree with intuition and the identified driver can depend on
system parameters. For the examples presented in this article,
PAI better indicates “driving” relationships that both agree
with intuition and are consistent in the sense that the driver
identification does not depend on system parameters.

0 50 100 150 200 250 300 350
−0.2

−0.1

0

0.1

L

Δ

0 50 100 150 200 250 300 350
−0.1

−0.05

0

0.05

L

Δ′
FIG. 10. The sign of � (�′) indicates the CCM (PAI) driving

between the altitude and mean temperature. The CCM algorithm
converges to � > 0 as the library length is increased, and the PAI
algorithm converges to �′ < 0 as the library length is increased.

The introduced pairwise asymmetric inference method
(PAI) attempts to keep the model-independent benefits of
CCM while making it more robust. (SSR methods such as
CCM and PAI are model independent, which may be seen as
a benefit over Granger causality methods.) PAI may be useful
exploratory data analysis. For example, PAI may help guide the
development of physical causality models (e.g., by suggesting
future experiments) in scenarios involving a large collection of
simultaneous time series measurements of different variables
in a system for which no a priori notions of causality in the
system exist.

The given definition of �′ in PAI, the sign of which is used
to identify a dominant driver, is not without its own difficulties,
however. For example, �′ does not account for the differences
between correlations between X and X|X̃ and between Y

and Y |Ỹ. Such differences may bias conclusions drawn from
using �′ without proper care. As a concrete example, consider
the example system and parameters (including E, τ , and
L) described at the beginning of Sec. IV. The value �′ ≈
−3 × 10−4 was already discussed, but notice CYY − CXX ≈
1.5 × 10−3, indicating that Y is a better “self-estimator”
than X (though both CYY ,CXX > 0.99). How does this fact
affect interpretations of the �′ < 0 result, which was that
X PAI drives Y ? Such questions are still open. It may be
argued that a different measure may be more suitable, such as
�′′ = |CY (YX) − CYY | − |CX(XY ) − CXX|. For this example,
�′′ ≈ 3.9 × 10−4, which does not agree with intuition, despite
the agreement of both � and �′. There are still many open
questions in the study of driving relationships among time
series sets using state space methods.

Finally, care should be taken in any discussion of causality
and especially in discussions of time series causality. We have
made many statements about failure to agree with “intuition”
in this paper. While some authors argue that any discussion of
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causality will necessarily involve appeals to intuition [32], the
possibility of intuition failing cannot be ignored completely.

Consider the RL circuit example of Sec. III C. The intuitive
definition of causality was motivated by an example of the
experimenter physically manipulating a voltage source to
create the V and I times series. Suppose instead that two such
experiments where conducted in isolation: one with an exper-
imenter, Alice, physically manipulating a voltage source and
measuring the current to create the V and I time series (call this
set VI) and another, different experiment with an experimenter,
Bob, physically manipulating a current source and measuring
the voltage to create the V and I time series (call this set IV).
Both VI and IV are handed to a third party, Charlie, who has
no a priori knowledge of how the time series are created.

Intuition for Alice is V causes I and she believes VI sup-
ports that conclusion. Likewise, Bob believes IV supports his
intuition that I causes V . Charlie, however, must rely on time

series analysis alone to determine the causality in the system.
The argument we present here is not that CCM causality is in-
sufficient because it does not provide Charlie with a definitive
answer (which it does not). Such a task is difficult and may not
even be possible with time series analysis alone [32]. The main
problem is that the CCM method, as it has been explored in this
work, is inconsistent. Any method Charlie uses must be consis-
tent if it is to be useful. Neither Alice nor Bob would change
their causality conclusions if they changed their respective
input frequencies [i.e., � in Eq. (8)]. However, if Charlie used
the CCM method, his causality conclusions would depend
on the frequency of the signal controlled by Alice (as seen
in Fig. 4). Thus, CCM causality would not be a consistent
tool for Charlie. PAI was shown to give consistent results for
the considered examples but does not address the ambiguity
identified in this example (i.e., PAI may not help Charlie
determine if it was Alice or Bob that created his time series).
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